Calculation Policy

Barlby Primary School

We aim for children to learn how to use and apply the four operations (addition, subtraction, multiplication, and division) in abstract maths and reallife maths problems. This should be taught through a progressive approach, challenging the children to use an array of strategies.
The following is guidance to the strategies that should be learnt by the pupil to ensure progress.

	Addition	Subtraction	Multiplication	Division
Rec	Children's accuracy when counting is consolidated to ensure that they can count reliably with numbers from 1-20 and say which number is one more than a given number. Using quantities and objects, they add two single-digit numbers and count on to find the answer. They use practical resources and a range of different objects and contexts to support addition and teachers demonstrate the use of the number line. They develop ways of recording calculations using pictures, etc. and begin to record their calculations using number sentences.	Children's accuracy when counting is consolidated to ensure that they can count reliably with numbers from 1-20 and say which number is one less than a given number. Using quantities and objects, they subtract two single-digit numbers and count back to find the answer. They use practical resources and a range of different objects and contexts to support addition and teachers demonstrate the use of the number line. They develop ways of recording calculations using pictures etc. and begin to record their calculations using number sentences.	Children will solve practical problems which involve multiplication in the context of doubling. They use practical resources and a range of different objects to support their understanding.	Children will solve practical problems which involve division in the context of halving and sharing (to make things fair). They use practical resources and a range of different objects to support their understanding. "One for me, one for you"

Children will experience equal groups of objects and begin to differentiate between equal and unequal groups, looking at repeated addition

They will count in $2 s$ and 10 s and begin to count in 5 s .

They will work on practical problem-solving activities involving equal sets or groups

E.g There are 4 equal groups with 3 in each group.

Children will understand equal groups and share items out in play and problem solving. They will count in 2 s and 10 s and later in 5 s

Children will continue to use empty number lines with increasingly large numbers, including compensation where appropriate.
$\checkmark \quad$ Count on from the largest number irrespective of the order of the calculation.
38.88:244

$\checkmark \quad$ Compensation

Children will begin to use informal pencil and paper methods (jottings) to support, record and explain partial mental methods building on existing mental strategies.

Using expanded column method. When confident begin to exchange. Children to use Dienes to support understanding.

$21+22=43$	$127+124=251$
$\frac{\text { T O }}{201}$	+H T O $20020 \quad 7$ $\underline{20 ~}+$
$40+3=43$	$\frac{100204}{200+50+1=251}$
	10

Children will continue to use empty number lines with increasingly large numbers.
$232-(121)=111$

Children will begin to use informal pencil and paper methods (jottings).

$\checkmark \quad$ Partitioning and decomposition

- Partitioning - demonstrated using arrow cards
- Decomposition - base 10 materials

NOTE When solving the calculation $89-57$, children should know that 57 does NOT EXIST AS AN AMOUNT it is what you are subtracting from the other number. Therefore, when using base 10 materials, children would need to count out only the 89 .

Using expanded column method. When confident begin to exchange

$$
\begin{array}{cc}
36-22=14 & 41-22=19 \\
\begin{array}{c}
\mathbf{T} \mathbf{0} \\
30 \quad 6
\end{array} & \text { 30 } \frac{\mathbf{T} \mathbf{0}}{40 \quad 11} \\
-20 \quad 2 & -20 \quad 2 \\
\hline 10+4=14 & 10+9=19
\end{array}
$$

Where the numbers are involved in the calculation are close together or near to multiples of 10, 100 etc counting on using a number line should be used. Children to use Dienes to support.
$102-89=13$

Children will continue to use:
$\checkmark \quad$ Repeated addition
$6+6+6+6=24$ or 4 lots of 6 or 6×4 Children should use number lines or bead bars to support their understanding.

$\checkmark \quad$ Arrays
Children should be able to model a multiplication calculation using an array. This knowledge will support with the development of the grid method.

$\square \square_{\square} \square_{\square} \square_{\square}$

 - 月- $^{-1}$ -

$9 \times 4=36$

$\checkmark \quad$ Scaling

e.g. Find a ribbon that is 4 times as long as the blue ribbon

$$
5 \mathrm{~cm}
$$

$\checkmark \quad$ Using symbols to stand for unknown numbers to complete equations using inverse operations
$\square \times 5=20$
$3 x \triangle=18$
$\square \mathrm{xO}=32$
$\checkmark \quad$ Partitioning
$201, \times 2=42$
$\frac{20 \times 2=40 \text { /1 } \times 2=22}{40}$
$38 \times 5=(30 \times 5)+(8 \times 5)$
$=150+40$
= 190

Ensure that the emphasis in Y 3 is on grouping rather than sharing

Children will continue to use:

$\checkmark \quad$ Repeated subtraction using a number

 lineChidren will use an empty rumber line to support their calculation.
$24-4=6$

Children should also move onto calculations involving remainders.
=13

Chunking on a number line method

$\checkmark \quad$ Using symbols to stand for unknown numbers to complete equations using inverse operations
$26 \div 2=\square$

$$
24 \div \triangle=12
$$

$$
\square \div 10=8
$$

Y4	Carry below the line. Using similar methods, children will: add several numbers with different numbers of digits; begin to add two or more three-digit sums of money, with or without adjustment from the pence to the pounds; know that the decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. $£ 3.59+78 p$.	Partitioning and decomposition $754=$ -86 Step $1 \quad \begin{array}{r}700+50+4 \\ -\quad 80+6 \\ \hline\end{array}$ Step $2 \quad \begin{array}{r}700+40+14 \\ -\quad \begin{array}{r}40 \\ 80\end{array}\end{array}$ (adjust from T to U) $600+60+8=668$ This would be recorded by the children as $\begin{aligned} & \begin{array}{c} 140 \\ 780 \end{array}+\sqrt{14}+{ }^{200} \\ & 80+6 \end{aligned}+668$ Decomposition $\begin{array}{r} 6141 \\ 754 \\ -\quad 86 \\ \hline 668 \end{array}$ Children should: be able to subtract numbers with different numbers of digits; using this method, children should also begin to find the difference between two three-digit sums of money, with or without 'adjustment' from the pence to the pounds; know that decimal points should line up under each other.	Children will continue to use arrays where appropriate leading into the grid method of multiplication. $\begin{gathered} (6 \times 10)+(6 \times 4) \\ 60+24 \\ 84 \end{gathered}$ Grid method TU x U (Short multiplication - multiplication by a single digit) 23×8 Children will approximate first 23×8 is approximately $25 \times 8=200$	Children will develop their use of repeated subtraction to be able to subtract multiples of the divisor. Initially, these should be multiples of 10 s , $5 \mathrm{~s}, 2 \mathrm{~s}$ and 1 s - numbers with which the children are more familiar. Moving onto: Then onto the vertical method: Short division TU $\div \mathrm{U}$ Leading to subtraction of other multiples. $96 \div 6$ Any remainders should be shown as integers, i.e. 14 remainder 2 or 14 r 2 . Children need to be able to decide what to do after division and round up or down accordingly. They should make sensible decisions about rounding up or down after division.

Y5	Children should extend the carrying method to numbers with at least four digits. Using similar methods, children will: add several numbers with different numbers of digits; begin to add two or more decimal fractions with up to three digits and the same number of decimal places; know that decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. $3.2 \mathrm{~m}-280 \mathrm{~cm}$.	Decomposition $\begin{array}{r} 6141 \\ 764 \\ -\quad 286 \\ \hline 468 \end{array}$ Children should: be able to subtract numbers with different numbers of digits; begin to find the difference between two decimal fractions with up to three digits and the same number of decimal places; know that decimal points should line up under each other Where the numbers are involved in the calculation are close together or near to multiples of 10,100 etc counting on using a number line should be used. $1209-388=821$	Grid method HTU x U (Short multiplication - multiplication by a single digit) 346×9 Children will approximate first 346×9 is approximately $350 \times 10=3500$ TU x TU (Long multiplication - multiplication by more than a single digit) 72×38 Children will approximate first 72×38 is approximately $70 \times 40=2800$ Using similar methods, they will be able to multiply decimals with one decimal place by a single digit number, approximating first. They should know that the decimal points line up under each other. e.g. 4.9×3 Children will approximate first 4.9×3 is approximately $5 \times 3=15$ $\begin{array}{cc\|c\|} \hline \times & 4 & 0.9 \\ 3 & 12 & 2.7 \\ \cline { 2 - 3 } & & \\ & & \\ \hline \end{array}$	Children will continue to use written methods to solve short division $\mathrm{TU} \div \mathrm{U}$. Children can start to subtract larger multiples of the divisor, e.g. 30x Short division HTU $\div U$ $196 ; 6$ Any remainders should be shown as integers, i.e. 14 remainder 2 or 14 r 2 . Children need to be able to decide what to do after division and round up or down accordingly. They should make sensible decisions about rounding up or down after division.

Y6	Children should extend the carrying method to number with any number of digits. Using similar methods, children will add several numbers with different numbers of digits; begin to add two or more decimal fractions with up to four digits and either one or two decimal places; know that decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. $401.2+26.85+0.71$.	Decomposition $\begin{array}{r} 3131 \\ 6467 \\ -\quad 2684 \\ \hline 3783 \end{array}$ Children should: be able to subtract numbers with different numbers of digits; be able to subtract two or more decimal fractions with up to three digits and either one or two decimal places; know that decimal points should line up under each other. Where the numbers are involved in the calculation are close together or near to multiples of 10,100 etc counting on using a number line should be used. $3002-1997=1005$	ThHTU x U (Short multiplication - multiplication by a single digit) 4346×8 Children will approximate first 4346×8 is approximately $4346 \times 10=43460$ HTU x TU (Long multiplication - multiplication by more than a single digit) 372×24 Children will approximate first 372×24 is approximately $400 \times 25=10000$ Using similar methods, they will be able to multiply decimals with up to two decimal places by a single digit number and then two digit numbers, approximating first. They should know that the decimal points line up under each other. For example: 4.92×3 Children will approximate first 4.92×3 is approximately $5 \times 3=15$ Use short multiplication method when confident to exchange. $\begin{array}{r} 4121 \\ 432 \\ \times \quad 57 \\ +3024 \\ \hline 21600 \\ \hline 24624 \\ \hline \end{array}$	Children will continue to use written methods to solve short division $T U \div U$ and $H T U \div U$. Long division HTU \div TU $972 \div 36$ Any remainders should be shown as fractions, i.e. if the children were dividing 32 by 10 , the answer should be shown as $32 / 10$ which could then be written as $31 / 5$ in its lowest terms. Extend to decimals with up to two decimal places. Children should know that decimal points line up under each other. $87.5 \div 7$

Reviewed: January 2022

Review Date: January 2024

